
 

INTRODUCTION

a) Selection of a number of 2D surfaces, called rebinning
surfaces,  which partition the 3D field-of-view.
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b) Rebinning: estimation of a complete 2D tomographic
data set (sinogram) for each selected surface using the
measured CB projections.
c) 2D reconstruction of each selected surface from its
estimated sinogram.
d) Axial Interpolation:  1D interpolation of the
reconstructed surfaces to obtain the transaxial slices to be
visualized.

Several rebinning algorithms have been proposed, which differ
mainly by the type of surface for which rebinned 2D data are
estimated. These surfaces can be transaxial slices orthogonal to
the axis of the helix [SSRB, 10], tilted planar slices  "tailored''
to the slope of the helix [9,14,1,3], or even non-planar
surfaces as in Heuscher [2] to further improve the possibility
to select rays lying as close as possible to the rebinning
surface. We present in the following section a unified
derivation of the various rebinning methods.

Rebinning algorithms only involve a 1D ramp filtering of the
data, and avoid the cone-beam backprojection. This numerical
simplicity results in less discretization errors than the exact
algorithms. The price to pay for this improvement is that
rebinning is approximate and introduces cone-beam artefacts
when the pitch of the helix becomes too large.

Therefore, the aim of this paper is to combine the best of the
two classes of algorithms: we propose to use a quasi-exact
algorithm, the ZB method, to correct a first image
reconstructed using a rebinning algorithm. The additive
correction is obtained by applying the ZB method to the
residual error, i.e. to the difference  between the measured
projections and the cone-beam projections of the first image
estimate. This approach is motivated by the fact that the
discretization artefacts induced by the exact algorithm only
affect the correction image, and hence are expected to be
smaller than when the exact algorithm is applied directly to the
measured data.

The performance of the combined algorithm is evaluated using
synthetic data for mathematical phantoms and for data obtained
by reprojecting high resolution CT scans.
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Cone-beam X-ray transmission computerized tomography (CB-
CT) has been applied to the non-destructive evaluation of
industrial samples, and a small number of prototype clinical
scanners have also been used for specific applications (cardiac
and vascular imaging), where fast imaging is an essential
requirement and only high contrast structures must be
visualized. The recent introduction of multi-row scanners now
allows a wide-spread utilization of CB-CT in radiology, and
the continuing development of large area x-ray detectors will
reinforce this trend.

The acquisition of cone-beam projections allows faster
imaging than standard or spiral single-row CT, but presents
challenges for 3D image reconstruction. Despite significant
advances, the definition of a clinically acceptable, fast and
accurate, cone-beam reconstruction algorithm is still an open
problem, especially  for the helical geometry where the x-ray
source moves along a segment of helix relative to the patient.
Accurate algorithms for helical CB-CT have been derived by
discretizing exact or quasi-exact analytical inversion formulae
for the 3D divergent-beam x-ray transform [4,7,8,12]. These
algorithms yield accurate reconstructions even when the ratio
between the pitch of the helix and the axial slice width exceeds
two orders of magnitude. Unfortunately, the numerical
complexity of these algorithms significantly increases the
reconstruction time and the discretization errors and affects the
resolution. These limitations of the exact algorithms motivate
an active research for approximate algorithms for helical CB-
CT.  

In this paper we introduce a new quasi-exact algorithm for the
long-object problem in helical CB-CT, which combines a
rebinning method with the quasi-exact ZB method [4].

Rebinning algorithms are based on the factorization of the 3D
reconstruction into a set of independent 2D reconstructions.
This  factorization can be viewed as a four-step procedure:



PLANAR AND NON-PLANAR REBINNING ALGORITHMS

The first contribution of this paper is to give a unified and
formal derivation of the various rebinning algorithms which
have been proposed in the litterature [1,2,3,9,10,14,15]. We
determine the mathematical properties, in particular the
symmetries, of the surface allowing the best rebinning, given
some reasonable quality figure. This surface is shown to be the
solution to an integral equation which can be solved by means
of an iterative algorithm. A proof of the convergence of this
algorithm and of the unicity of the optimal rebinning surface
is given. We also investigate how much can be gained by
rebinning onto non-planar surfaces as opposed to planes, and
conclude that rebinning onto planar surfaces is sufficiently
accurate as long as the radius of the field-of-view does not
exceed about half the radius of the helix (figure 1).

For the combined algorithm described in the next section, we
rebin on tilted planes, the orientation of which optimize the
mean square axial distance Q between the rebinning plane and
the measured rays used to build the corresponding 2D data set
[3]. We generate a short-scan fan-beam data set rather than a
parallel-beam data set, and the mean square axial distance Q is
calculated taking into account both the fan-beam redundancy
weight (Parker's weight) and the distance dependent weight in
the 2D fan-beam backprojection.

Figure 1: Root mean square axial distance (mm) between the
rebinning surface and the measured rays used to build the 2D
data set, versus the radius of the FOV (mm). Helix radius 400
mm. Pitch 100 mm. The 3 curves correspond from top to
bottom to: SSRB (rebinning on transaxial planes), optimal
tilted plane, optimal non-planar surface.

THE COMBINED ALGORITHM

We denote the unknown 3D image by f and the 3D X-ray
transform (the CB projector) by X. The data are denoted as
g=Xf.
Recall first the steps of the ZB algorithm [see 4 for details]:

a) Weighted backprojection of the subset of cone-beam
data g located, in the detector, along the boundary of Tam's
window B1. This backprojection operator is denoted XB

* and
is defined so as to yield an image f1  = XB

*g the cone-beam
projections of which,  g1  = X f1 , are equal to the data
along the boundary of Tam' window:  g1 = g on B.
b) Reprojection: Calculation of the cone-beam projections
of the first image estimate f1 and subtraction from the data
to get modified data  g2 = g -  g1 . Note that  g2 = 0 on B.
c) Reconstruction of the modified data by  

i)   setting  g2 = 0 outside B,
ii) applying a 1D ramp filter along the direction

tangent to the helix,
iii) backprojecting as in Feldkamp's algorithm.

We denote this procedure as FB-FDK [6] and the result as  
f2 =  FB-FDK g2.
d) Addition of the two images after applying a smoothing
filter S designed to match spatial resolutions: f = S  f1 +
f2.

The key to the quasi-exactness of the ZB method is the
property that X f1 = g on B. This property is satisfied by the
image f1  = XB

*g constructed in step a above, but this image
has no resemblance to the true image f, and therefore the
applied correction  f2 (and the associated discretization errors)
may be large.

In the combined algorithm proposed in this paper, we build an
alternative image  f1 which also satisfies  X f1   = g on B    but   
is in addition a good approximation to f. This is done using a
rebinning algorithm (described in the previous section, and
denoted by Freb):

a) Initial reconstruction by rebinning:  freb =  Freb g
b) Calculation of a first image estimate as

f1  = XB
*(g- X  freb ) +  freb

where XB* is the weighted backprojection of the data along
B, defined above.

The last three steps are as in the ZB method:
c) Reprojection: calculation of the cone-beam projections
 g1  =  X f1   of the first image estimate, and subtraction
from the data:  g2  = g -  g1

d) Feldkamp's reconstruction:  f2 =  FB-FDK g2

e)  f = S  f1 +  f2

One easily checks that the property X f1  = g on B is satisfied
exactly (within discretization errors)  by the image
 f1  = XB

*(g- X  freb ) +  freb  used in this combined algorithm.
This guarantees the quasi-exactness of the algorithm. The
advantage over ZB is that this f1 image is a good
approximation of the original object, and therefore the
correction term  f2, and the associated discretization errors,  are

1 Tam's window B is the region bounded, in the detector, by the cone-
beam projection of the upper and lower turns of the helix [11,13].
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smaller.  The most time consuming steps in the combined
algorithm are the calculation of  g1 (step c) and the Feldkamp's
step (d).

For the results presented in the following section, we have
implemented a simplified version of the algorithm in which
we skip step b) and simply use  f1  = freb instead of  f1  = XB

*(g-
X  freb ) +  freb.  This approximation is motivated by the fact
that the image freb obtained by rebinning may be already
sufficiently accurate to guarantee that X freb   g along B.  A
comparison between the approximate and exact versions of the
combined method will be presented at the conference.

RESULTS

We have evaluated the performance of the combined algorithm
using simulated data for a head phantom similar to that used
by S. Schaller [5]. The phantom is contained in a sphere of
radius 100 mm. Data were simulated for a helical path with
1.5 turns and a pitch P=108 mm. The radius of the helix was
R=400 mm and there were 1200 vertices per helix turn. The
first and last vertices were at locations z=±81 mm. As defined,
the helix did not extend over the whole axial extent of the
phantom, and we are therefore dealing with a long object
problem.

Data were simulated on a virtual rectangular detector located at
a distance D=400 mm from the cone vertex, i.e. at the
isocenter. The detector pixel size was 0.5 x 0.5 mm. There
were 400 channels and  200 detector rows.

The angle between the optimal rebinning tilted plane and the
transaxial plane was η=3.4 degrees, and the planar rebinning
algorithm used the central 134 rows of the detector (maximum
cone angle 4.8 degrees).  The maximum distance between a ray
used for rebinning and the corresponding tilted plane was 2.5
mm, to be compared with 7.8 mm with the SSRB method
(η=0). The difference  between  these two figures illustrates the
benefit expected from the planar rebinning algorithms. For all
reconstructions, the ramp filter was apodized with a Hamming
window cut-off at the Nyquist frequency.

Figures 2, 3 and 4 show reconstructions on a grid of
400x400x200 cubic voxels of 0.5 mm, displayed with a gray
scale in the range [1.0,1.1]. The results illustrate the important
improvement in image quality obtained by rebinning on tilted
planes instead of transaxial planes in SSRB [9,14,1,3]. A
reconstruction using optimal non-planar rebinning surfaces
(not shown) was practically identical to the reconstruction
using tilted planes, as could be expected from  figure 1.

The results in figures 2,3,4 also demonstrate that the artefacts
observed with the rebinning algorithm are largely suppressed
by the combined rebinning-ZB algorithm introduced in this
paper.  These data also confirm that the short-scan helical
Feldkamp (FDK) algorithm (bottom right images) is not

superior to planar rebinning, even though FDK uses a "true"
cone-beam backprojection.

Figure 5 shows a comparison of the new combined algorithm
with the ZB method. Some improvement is observed,
especially in the longitudinal section where the streak artefacts
caused by the 4 disks are suppressed by the combined method.
On the other hand a new artefact is observed around the dark
ellipse in the transaxial section. Note that all these results
have been obtained with the simplified version of the
combined method, as described in the previous section.

A more detailed study using data obtained by reprojecting a
high resolution CT scan will be presented at the conference.
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Figure 2. Central longitudinal section x=0. Gray scale
[1.0,1.1]. Top left: SSRB, top right: planar rebinning, bottom
left: combined rebinning+ZB, bottom right: short-scan FDK.



Figure 3. Central transaxial section z=0. Gray scale [1.0,1.1].
Top left: SSRB, top right: planar rebinning, bottom left:
combined rebinning+ZB, bottom right: short-scan FDK.

Figure 4. Transaxial section z=19 mm. Gray scale [1.0,1.1].
Top left: SSRB, top right: planar rebinning, bottom left:
combined rebinning+ZB, bottom right: short-scan FDK.

Figure 5. Comparison between the combined method (left
column) and the ZB method (right column) for a transaxial
section z=19 mm and for a longitudinal section (x=0). Gray
scale [1.0,1.1].


